If it's not what You are looking for type in the equation solver your own equation and let us solve it.
t^2-625t-9000=0
a = 1; b = -625; c = -9000;
Δ = b2-4ac
Δ = -6252-4·1·(-9000)
Δ = 426625
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{426625}=\sqrt{25*17065}=\sqrt{25}*\sqrt{17065}=5\sqrt{17065}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-625)-5\sqrt{17065}}{2*1}=\frac{625-5\sqrt{17065}}{2} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-625)+5\sqrt{17065}}{2*1}=\frac{625+5\sqrt{17065}}{2} $
| 1/x+1/2x+1/6x=1/30 | | x²+9x=-8 | | x²+9x+8=0 | | -10(1+10r)=11(-r+7)+2 | | 50+20*3+10z=450 | | 6s^2+185=0 | | 2x=292 | | x/5.5=16 | | 4x=24x-9600 | | 2/3n=15-n | | 7x-17=x+7 | | 2x²-12x-5=0 | | 2x²=98 | | 3x+36=16x-63 | | 400/x=0.05 | | 32=(2)3x-1 | | 3+x/2+6x-0.22=0 | | x-4x-2-4=0 | | (2x+5)^2-(2x-5)^2=40x | | 3x-1/4-2x=0 | | 140/x=0.05 | | (x/3)+5=2x-15 | | 235-x=4(305-4x) | | 5x+162=11x-6 | | (1+0.075)^x=2 | | x*18/100+x=5192 | | 3(x+2)²=2x²+3x-8 | | (0.5-2x)^2=0 | | 3×(3-x)+12=48 | | 18x^2-51x-34=0 | | 4(5x-3)-2(5x-11)=3(3x+2)-2 | | -5(4x-4)-2(2x-11)=3(5x+2)-4 |